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1. Introduction 

1.1 

Operators intertwining representations of Lie groups play a very important role both in 
mathematics and physics. To recall the notions, consider a Lie group G and two representa- 
tions T, T’ of G acting in the representation spaces C, C’, which may be Hilbert, Frechet, 
etc. An intertwining operator Z for these two representations is a continuous linear map 

z : c--+ c’, 2: f-j, f E C, j EC’, (1.1) 

such that 

Z o T(g) = T’(g) o Z Vg E G. (1.2) 

An important application of the intertwining operators is that they produce canonically 
invariant equations. Indeed, in the setting above the equation 

Zf = j (1.3) 

is a G-invariant equation. These are very useful in the applications, recall, e.g., the well- 
known examples of Dirac, Maxwell equations. The intertwining operators are also very 
relevant for analysing the structure of representations of Lie groups, especially of semisim- 
ple (or reductive) Lie groups, cf., e.g., [22,24,31,32]. There are two types of intertwining 
operators: integral and differential. For the integral intertwining operators, which we shall 
not discuss here, we refer to [22,3 l] for the mathematical side and to [ 1 l] for explicit ex- 
amples and applications. For the intertwining differential operators we refer to [ 10,24,32] 
(for early examples and partial cases see, e.g., [1,2,5,6,9,11,12,14,16-18,26,27,30]). 

1.2 

In the present paper we discuss multilinear intertwining differential operators such that 

kz: ~@~~.@fi++ j, f E C, j EC', 

k 

kz 0 T(g) ‘8.. . CC’ T(g) = T’(g) o kz Vg E G. 

(1.4) 

(1.3 

Clearly, for k = 1 (1.4) and (1 S) reduce to (1.1) and (1.2), respectively. 
Let us give an example of such an operator for k = 2. Let G = SL(2, R) and consider 

Coo-functions so that the representation is acting as [ 151: 

T”(g) f(x) = 16 - /3x1-“f 6 - /3x # 0, 

ah--BY=l, a,B,Y,dER, 
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where c E @is a parameter characterizing the representation (for more details see Section 4). 
Consider now the operator 

*Z(f’) = f”“f” - ; (f”)2, (1.7) 

where .f“, ,f”‘, ,f“” are the first, second, third, respectively, derivatives of f’. Let us denote 
the space of functions with (I .6) as transformation rule by C”. Then it is easy to show that 
21 has the following intertwining property: 

zZ:.f’@..f++ j, fEC”, jEC*, (1.8) 

2Z 0 V”(g) 63 7-o(g)) = 7-?g) 0 2Z Vg E G. (1.9) 

I.3 

We would like to note that our problem is related to the problem of finding invariant 
n-differentials. In the simple example above such a relation is straightforward. Indeed an 
example of invariant quadratic differential is the Schwarzian (cf.. e.g., [20]): 

Sch (f o f,) = Sch(f(x)) ofo. f&x) = z, (1.10) 

Sch (fo) = 0. 

Of course, such direct relation,s are an artifact of the simplicity of the situation. Our setting 
is more general than the problem of finding invariants as in ( 1.10) since it allows in principle 
arbitrary representation parameters. Below we give such operators for any semisimple Lie 
group. 

For other examples of multilinear invariant operators see, e.g., [3,13]. These examples 
rely on adaptations of the classical polynomial invariant theory of Weyl [29]. Another 
approach is to use invariant differentiation with respect to a Cartan connection [7]. 

1.4 

Our approach is different from those of [3,7,13], mentioned above. It is a natural gen- 
eralization of the k = 1 procedure of [lo]. More than that, the present paper contains 
two interrelated developments. First we propose new generalized Vet-ma modules. They are 
called k-Verma modules, k E N, and coincide with the usual Verma modules for k = I. As 
a vector space a k-Verma module is isomorphic to the symmetric tensor product of k copies 
of the universal enveloping algebra U (G-), where G- is the subalgebra of lowering gener- 
ators in the standard triangular decomposition of a simple Lie algebra G = @ @ 8 $ &?. 
The second development is the proposal of a procedure for the construction of multilineur 
intertwining differential operators for semisimples Lie groups G. This procedure uses the 
k-Verma modules and coincides for k = 1 with our procedure for the construction of lin- 
ear intertwining differential operators [ IO]. For all k central role is played by the singular 
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vectors of the k-Verma modules. Explicit formulae for series of such singular vectors are 
given for arbitrary G. Using these are given explicitly many new examples of multilinear 
intertwining differential operators. In particular, for G = SL(2, R) are given explicitly all 
bilinear intertwining differential operators. Using the latter, as an application are constructed 
in-differentials for all n E 2N, the ordinary Schwarzian being the case n = 4. 

1.5 

The organization of the paper is as follows. 
In Section 2 we first recall the usual Verma modules formulating their reducibility con- 

ditions in a way suitable for our purposes. Then we introduce the new generalization of 
the Verma modules, which we call k-Verma modules, and we give some of their general 
properties. 

In Section 3 we consider the singular vectors of the k-Verma modules. Using the singular 
vectors we show that k-Verma modules are always reducible independently of the highest 
weight in sharp contrast with the ordinary Verma modules (k = 1). We also give many 
important explicit examples of singular vectors for k = 2,3. For bi-Verma (= 2-Verma) 
modules we give the general explicit formula for a class of singular vectors, which exhausts 
all possible cases for G = sl(2). 

In Section 4 we first recall the procedure of [ lo] for the construction of linear intertwining 
differential operators. Then we generalize this procedure for the construction of multilinear 
intertwining differential operators. This is a general result which produces a multilinear in- 
tertwining differential operator for every singular vector of a k-Verma module, the procedure 
of [lo] being obtianed for k = 1. 

In Section 5 we study bilinear operators for G = SL(n, IF!) mentioning also which 
results are extendable to SL(N, C). We give explicit formulae for all bilinear intertwining 
differential operators for 6 = sZ(2, R) and SL(2, R), noting the difference between the 
algebra and group invariants. We study in some detail partial cases, in particular, an infinite 
hierarchy of even order intertwining differential operators producing in-differentials for 
all 12 E 2N, the ordinary Schwarzian being the case n = 4. We also give many examples 
for SL(2, R). 

In Section 6 we give some examples which illustrate additional new features of the 
multilinear intertwining differential operators fork > 2. 

In Appendix A we have summarized the notions of tensor, symmetric and universal 
enveloping algebras. 

2. k-Verma modules 

2.1 

Let F = @ or F = R’. Let 6 be a semisimple Lie algebra over F = @ or a split 
real semisimple Lie algebra over F = R. Thus G has a triangular decomposition: G = 
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C? @ 7-L CB Sp, where 8 is a Cartan subalgebra of G (the maximally non-compact Cartan 
subalgebra for F = IF!), G+, respectively G-, are the positive, respectively. negative root 
vector spaces of the root system A = A(G, ti), corresponding to the decomposition A = 
A’ U A- into positive and negative roots. (For F = R this decomposition is a partial 
case of a Bruhat decomposition.) In particular, one has: G’ = @aG4+($. In our cases 

dimG;m = 1, VP E A+, and further Xi will denote a vector spanning $. Let As be 
the system of simple roots of A. Let r+ E 7-1* denote the set of dominant weights, i.e., 
u E f + iff (u. av) E N+ for all CZ~ E As. Let U(G) be the universal enveloping algebra of G 
with unit vector denoted by 1,. (The notions of tensor, symmetric and universal enveloping 
algebras are recalled in Appendix A.) 

Let us recall that a Verma module V” IS defined as the HWM over G with highest 
weight A E ‘H* and highest weight vector uo E V *, induced from the one-dimensional 
representation Vo Z Cue of U(B), where a = B+ = ‘R @ G+ is a Bore1 subalgebra of I;. 
such that 

xv0 = 0, x E G+, 
HLj() = A(H)uo. H E IFI. 

(2.1) 

Thus one has 

(isomorphisms between vector spaces). One considers V” as a left C/(G)-module (w.r.t. 
multiplication in U(G)). 

Verma modules are generically irreducible. A Verma module is reducible iff it has singular 
vectors (one or more) [4]. A singular vector of a Vet-ma module V” is a vector 11, E V”, 
such that u5 $ F 1, @ uu and 

xv, = 0. x EG+, 
Hu, = (A(H)) - p(H)us. p E r+, I_( # 0. H E ‘FI. 

(2.3) 

The space UK-) 63 us is a submodule of V” isomorphic to the Verma module VApL’ = 
U(G-) ~23 I& where ub is the highest weight vector of V ‘-P. the isomorphism being re- , 
alized by us t-+ 1, @ I&. Furthermore, there exists (at least one) decomposition /J = 
Cy=t m,/$.m; E N, /3i E A +; the latter statement in the case n = I means that I_I = 
rnb, m E N. /I E A+. For each such decomposition there exists a composition of em- 
beddings of the Vet-ma modules Vi = V”-“I~~I which thus form a nested sequence of 
submodules, so that V; is a submodule of VI_, , i = 1, . . . n, VO E VA. Each such sub- 
module is generated by a singular vector of weight m; B;. The singular vector of weight rnfl 
is given by [lo]: 

mS us = 21, = Pmqx,, . . ( x,-, @ WJ, (2.4) 

where P”@ is a homogeneous polynomial in its variables of degrees mni, where n; E Z+ 
come from /3 = xn;o;, ai form the system of simple roots As. The polynomial Pi is 
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unique up to a non-zero multiplicative constant. From this follows that the singular vector 
of weight p is given by 

u, = u,” = pmnBn . . . p”lBI @ vo. (2.5) 

Finally, we should mention that in this setting the highest weight satisfies 

(A + P, By) -ml = (A + p)(Hp,) -ml = 0, (2.6) 

where p is half the sum of all positive roots, CX” = ~cY/(u, (Y) for any a! E A, ( , ) is the 
scalar product in 7f*, Ha E 7-l corresponds to a! E A+ under the isomorphism ‘FI 2 ?-f*. 
As a consequence one has 

(Ai_t_tP,j?v)=mi, i=l,...,n, 

Ao=A, Ai = Ai- - mi/?i. (2.7) 

One should note that condition (2.6) is in fact necessary and sufficient for the reducibility 
of a Verma module. Thus one may say equivalently that the Verma module V” is reducible 
iff there exists a root /I E A+ and m E N so that holds [4]: 

(A + p, B”) - m = (A + p)(Hp) - m = 0. (2.8) 

We have chosen a different exposition here since in the generalization of the Verma modules 
we introduce below we do not rely on an analogue of (2.8) and reducibility is discussed via 
singular vectors. 

2.2 

We introduce now a generalization of the Verma modules. Let k be a natural number, let 
lk (G) be the tensor product: 

x(G) A Tk(u(@) = u(6) ‘8...‘8 u(6), (2.9) 

and let Sk (6) be the symmetric tensor product 

Sk(G) k sk(u(G)) = Tk(u@))/lk(u(G)). (2.10) 

Then arbitrary elements of Sk(G) shall be denoted as follows: 

U = (Ut ‘8 '. . '8 Uk}, uj E u(G), (2.11) 

where {. . .) denotes the symmetric tensor product which is preserved under abitrary per- 
mutations Ui * Uj. 

Definition 1. A k-V&-ma module k V” is a highest weight module over 6 induced from the 
one-dimensional representation of 0 (c$ (2.1)) so that 

kv A g ~k(!i%bO 2 Sk@-)&O, 6% = &/(a) (2.12) 
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(isomorphisms between vector spaces). k V” is considered a left U(G)-module (w.r.t. mul- 
tiplication in U(G)). Denoting arbitrary u of kV” consistently with (2.11): 

u= {Ul @...@ULlk]&Jl). Uj E U(G-). (2.13) 

we define the action of U(G) as follows: 

Remark 1. Clearly, 1 -Verma modules are usual Verma modules. 

Corollary 1 (from Definition 1). Lef H E 3-1, let Uj be from rhe PBW basis of U(G-). let 
pj be the (negative) weight Of uj, i.e., [H. Uj] = -I_cj(H)uj. Then we have 

=c {Ul @a... 
A 

~uj~...~~Uk}~(H-I_Lj(H))vg 
j=I 

= kA(H) - elii 
j=l 

(2.15) 

2.3 

We need some more notation to proceed further. Let P(p) be the number of ways I-( E F+ 
can be presented as a sum of positive roots B. (In general, each root should be taken with 
its multiplicity; however, in the cases here all multiplicities are equal to 1.) By convention 
P(O)~l.Let~Ff~F’x~~~xF+.kfactors.Let~~=(~~,...,~~)~~F’.~j EF+. 
and let (T (k.) L x6= I_L. E F+. Let F E F+ and Pk (p) be the number of elements k v = 

J 1 J 
(VI, . , VA) E k F+ such that CT(~U) = CL, each such element being taken with multiplicity 
Hi=, P(vj). Clearly, P&(O) = 1, P&(/J) = k, VP E As. Finally we define 

kF+-(kp=(pl,..., > Pk) E kF+ IPl > ‘.’ 2 @kj, (2.16) 

where some ordering of ‘H* (e.g., the lexicographical one) is implemented. Let p E F+ and 
let PL? (p) be the number of elements kV = (VI, . . . uk) E kf,+ such that I = I-(, each 

such elements being taken with multiplicity ni=, P(IIj). Clearly, Pk(0) = 1, P,‘(p) = 1 
VP E As. Now one can prove the following: 

Proposition 1. Let A E If* and let 

kVu * G {v E kvA ) Hv = (kA(H) - p(H))v]. (2.17) 
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(2.18a) 

(2.18b) 

Then we have 

x ix;, 
, -.xsl @ .. 

. c3 x;k . . . Xik }63Fvo, 
*I I “k 

kVgl = (1, @. . . @ 1,)6&o, 

kVA =&(G-)kq, Gf& = 0, 

(2.18~) 

(2.18d) 

(2.18e) 

where in (2.18~) the ordering of the root system inherited from the ordering of l-f* is 
implemented. 

Proqfi Completely analogous to the classical case k = 1 [8]. 0 

3. Singular vectors of k-Verma modules 

3. I 

In contrast to the ordinary Verma modules (k = l), the k-Verma modules for k > 2 are 
reducible independently of the highest weight, which is natural taking into account their 
tensor product character. This we show by exhibiting singular vectors for arbitrary highest 
weights. 

We call a singular vector of a k-Verma module k V” a vector us E kVOA such that u, q! kV[ 
and 

xu,=o, x E (T+, (3.la) 

Hv, = (k-4(H) - ~(H))vs, I-L E r+t, P # 0, H E ?-L (3.lb) 

i.e., v, is homogeneous: U, E kVt for some I_L E f +. Fork = 1 (3.1) coincide with (2.3). 
The space Sk (G-)u, is a submodule of k V” isomorphic to the Verma module k Vk”-@ = 

&WI C3 u;, where uh is the highest weight vector of k Vk”-@; the isomorphism being 
realized by us H (1, @3 . . . 18 l,]&&. 

In the next two sections we show some explicit examples for the cases k = 2, 3. 

3.2 

We consider now the case k = 2, i.e., bi-V&ma (= 2-Verma) modules. We take a weight 
P = ncx, where n E N and CY E As is any root. We have dim TV& = [n/2] + 1, where [x] is 
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the largest integer not exceeding x. The possible singular vectors have the following form: 

[n/21 
*q’y = c 

^ 
y$(X,Y’ 63 (x,)J)c3uo. (3.2) 

j=o 

The coefficients vn;? are determined form condition (3.1 a) with X = Xz - all other cases 
of (3.1) are fulfilled automatically. Thus we have: 

Proposition 2. The singular vectors of the bi-Verma (= 2-Verma) module 2 VA of weight 
p = n(Y, where n E N and CY E As is any simple root, are given by,formula (3.2) with the 
cnq@cients ynj given explicitly by 

Y,$ = yoy(n. A(H))(-l),j(2 - aj.n/2) 

n 0 f(A(H) + 1 -n + j)r(A(H) + I - j) 
X 

j T(A(H)+ 1 -n)f(A(H)+ 1 -[n/2])’ 
I 

1 ,for II even and arbitrap A(H), 
1 .for n odd, 

v(n. A(H)) = 3 A(H)=n-l,n-2 ,.... i(n-I). 
0 ,for n odd, 

A(H) # IZ - 1, n - 2.. . . , ;(n - 1). 

and yo is an arbitrary non-zero constant. 

(3.3) 

Pror$ Follows from the direct verification. u 

We give the lowest cases of the above general formula for illustration (fixing the overall 
constant ~0 appropriately): 

z”s a = [X, @I 1,}6&, A(H) = 0. (3.4a) 

7~2~ = (A(H)(XJ2 @ 1, - \ 

- (A(H) - 1)X, 8 X,}&o VA(H), (3.4b) 

&@ = (A(H)(X,)” &I 1, 

- 3(A(H) -2)(X,)’ @ X,]&Q. A(H) = 1.2. (3.4c) 

g1;1oI = (A(H)(A(H) - 1)(XJ4 @ I, 

- 4(A(H) - l)(A(H) - 3)(X,)” @ X, 

+ 3(A(H) - 2)(A(H) - 3)(X,)’ @ (X,)‘)&uo VA(H). (3.4d) 

Proposition 2 confirms that bi-Verma modules are always reducible since they possess 
singular vectors independently of A. In fact, they have an infinite number of singular vectors 
of weights ntri, for any even positive integer n and any simple root ai. Moreover, they possess 
singular vectors of other weights, also independent of A. For example we consider weights 
/_L~ = nB = n(crl + a~), where /3 is a positive root, and 011, a:! are two simple roots, e.g., 
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of equal minimal length (for simplicity). Then there exist singular vectors of these weights 
given by, e.g., 

2uf = {AlX,X, @ 1, - 4x;x; @I 1” 

-(AI+Az+~)X;@X;}&~ VA, (3.5) 

A, = A(&), a = 1,2, 

28 2% = a, (X,)2 63 1, + u2x;x;x; @ 1, 

+a3(X;)2(X;)2 @ 1, 

+ blX,X,@xX,+b2X,X,@xX, 

+clx;(x,)2@x; +c2(x;)2x,@x; 

+dlX;@x~+&X~@x;X; 

+d3X;X;@X;X;+ c&(X,)~@((X;)~ VA, 

where for the two solutions (present in this case) the coefficients are: 

01 = A:A2(A, + A2 + l)(A2 + I), 
a2 = -AtA,(A] + A2 + l)(Al - A2 - 2), 
~3 = -AIA~(AI + A2 + l), 

h = -AI(AI + A2 + l)(Ar + A2)(A2 + 2), 

62 = AIA~(AI + A2 + ])(A] + A,), 

CI = AI(AI + A2 + l)(Al + A2). 

c2 = A2(A1 + A2 + l)(A) + A2). 
d] = -A:(4 + A2)(A; + A2 + l), 
4 = AI(AI + A2)(AlA2 + 2A1 - A; + A2), 

d3 = -(AI + A2)(A: + AlA + A;). 
d4 = 0. 

(3.6a) 

(3.6b) 

UI = 2&W, + A2 + l)(A; - A2 - 1 + AlA2), 

~2 = -2A1(A1 + A2 + l)(Al + A2 - l)(Ar - A2)(A2 + l), 

~3 = AI(AI + A2 + l)(Al + A2 - l)(A1 - A2), 

b] = -2n1C-41 + A2 + 1)2(A, + A2)(A, - l), 
b2 =~AI(AI+A~+~)(AI+A~)(A~-~A~-I+A,A~+A,), 
C] = 0. 

C2 = -~(AI + A2 + l)(Al + A2 - l)(Al + A2)(Al - A,), 

d1 = -2A:(A, + A2)(A2 - l)(AtAz + A1 + A;), 

d2 = -~AI(AI + A2)(A2 - l)(A; - 2A2 - 1 - A:), 

d3 = -~(AI + A2)(A2 - l)(A1A2 + A1 + Ai), 

d4 = AI(AI + A,)(A, + A2 + 1)2. 

(3.6~) 

Furthermore, the structure of the Verma modules is additionally complicated since there 
is no factorkhn Of the singular vectors as for k = 1, cf. (2.5). For the latter consider the 
weight PO = 2a1 + ~2, with UI, ~2 as in the previous example. Then there exists a singular 
vector of this weight given by 
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2% !-Q = {(2AlA? + Al - A2 - 1)(x,)*x; @ 1, 

- 2AtA2X,X,X, @ I, 

+ (AI + A2 + 1)(X;)* @X, 

- 2(AI - l)(A2 + 1,x;x; @ x; 

+ zAz(Al - l)X;X; @ X,&J, VA. (3.7) 

3.3 

Here we consider the case k = 3, i.e.. tri-&rma (=3-Verma) modules over arbitrary G. 
Consider a weight ~_r = na, where n E N and CY E AS is any simple root. We first note the 
dimension of the weight space 

dim 3Vnt = (n - 3b/61)(1 + [n/61) + &+4n/61. (3.8) 

The possible singular vectors have the following form: 

3q = c y,${(x,)“-‘-” @ (Xi)’ @ (X,)“]&o. (3.9) 
,_kL 

rr-,-Al,>i( 

The coefficients y$k are determined from condition (3.1 a) with X = Xz - all other cases 
in (3.1) are fulfilled automatically. We give now the singular vectors for n 5 6 denoting 
/i = A(H): 

3v; = ix, 8 1, @ l”l&Q _A =o. 

3us 2U = (&X,)2 @ l&l, 

- c/i - 1)X, @ x, @ l,]$ve VA, 

?tJ, jcx = (/i’(X,)” @ 1, @ 1, 

- 3&A - 2)(X,)‘@ x, @ I, 

+ 2(i - l)(li - 2)X, @$ x, @ X,}&uu VA. 

3u, 4a = (ri(ci - 1)(X,)% 1” @ 1, 

- 4(li - l)(i 3)(X,)3 @X, @ - 1, 

+ 3(li - 2)(li - 3)(X,)” &I (X,,’ @ I”)&~” VA. 

3u, “,zx = {(XJ4 @ 1, @ 1, + 8(XJ3 @ X, @ I, 

+ 12(XJ2 @ x, @ x,1&,. ci = 1. 

3vs 5cx = {li2(i - 1)(X,)” @ 1” @ 1” 

- 5&A - l)(li 4)(X,)4 c$ x, - c3 1, 

+2&A - 3)(A -4)(X,)” @ (Xi)’ @ I, 

+ 8(li - ])(A - 3)(A -4)(X,)3 El x, @ x, 

- 6(li - 2)(li - 3)(/i -4)(X,)” @ (X,)’ @ X,]&Q Vi, 

3u, ‘5a = {2(X,)3 @ (X,)% @I I” 

(3.lOa) 

(3.lOb) 

(3.lOc) 

(3.10d) 

(3. IOe) 

(3.1Of) 
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3vs ‘6a = (li(li - l)(li - 2)(XJ6 @ 1” @ 1, 

- 6(li l)(i 2)(ii 5)(X,)5 @ X, 8 1, - - - 

+ lS(li - 2)(/i - 4)(fi - 5)(X,) @ (qJ2 cza 1, 

- lO(i 3)(i 4)(li 5)(x,)3 @ (x,)3 8 l,]&Jvo - - - v/i. 

(3.1%) 

(3.10h) 

(3.1Oi) 

We give those examples in order to point out some new features appearing for tri-Verma 
modules in comparison with the bi-Verma modules: 
_ independently of A(H) there exists a singular vector at any level TZCX, except the lowest 

n = 1, while for bi-Verma modules singular vectors at odd levels exist only for special 
values of A(H); 

- there exists more than one singular vector at any fixed level n(~ for n z 6 and arbitrary 
A(H). For special values of A(H) there exists a second singular vector for n = 4,5. 
Similar facts hold for k-Verma modules for k > 3. These questions will be considered 

in another publication. In the present paper we would like to demonstrate in the following 
sections examples sharing the usefulness of these modules. 

4. Multilinear intertwining differential operators 

4.1 

We start here by sketching the procedure of [lo] for construction of linear intertwining 
differential operators which we generalize in Section 4.2 for multilinear intertwining dif- 
ferential operators. Let G be a semisimple Lie group and let G denote its Lie algebra. (Note 
that the procedure works in the same way for a reductive Lie group, since only its semisim- 
ple subgroup is essential for the construction of the intertwining differential operators. We 
restrict to semisimple groups for simplicity. For more technical simplicity one may assume 
that in addition G is linear and connected.) Let G = K A0 No be an Iwasawa decomposition 
of G, where K is the maximal compact subgroup of G, A0 is abelian simply connected, the 
so-called vector subgroup of G, No is a nilpotent simply connected subgroup of G preserved 
by the action of Ao. Further, let Mu be the centralizer of Ao in K. (MO has the structure 
Mu = Mod Mh, where Mod is a finite group, M,’ is reductive with the same Lie algebra as 
Mu.) Then PO = MO A0 No is called a minimal parabolic subgroup of G. A parabolic 
subgroup of G is any subgroup which is isomorphic to a subgroup P = MAN such that: 
PO c P c G, MO c M, Ao > A, No > N. (Note that in the above considerations every 
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subgroup N may be exchanged with its Cartan conjugate fi.) The number of non-conjugate 
parabolic subgroups (counting also the case P = G = M) is 2”, t-0 = dim Ao. 

Parabolic subgroups are important because the representations induced from them gen- 
erate all admissible irreducible representations of G [23,25]. In fact, for this it is enough to 
use only the so-called cuspidul parabolic subgroups, singled out by the condition that rank 
M = rank M n K; thus M has discrete series representations. 

Let P be a cuspidal parabolic subgroup and let p fix a discrete series representation 
D” of M on the Hilbert space V, or the so-called limit of a discrete series representation 
(cf. [21]). Let u be a (non-unitary) character of A. u E A*. where A is the Lie algebra of 
A. We call the induced representation x = IndF(p @ v @ I) an elementa? representution 
of G. (These are called generalized principal series represerltutions (or limits thereof) in 
]2 11.) Consider now the space of functions 

C, = (F E CW(G. VW) 1 _F(gmun) = e”(H’DF(m-‘)_F(g)), (4. I ) 

where g E G. m E M, u = exp(H), H E A, n E N. The special property of the functions 
of C, is called right covuriunce [lo] (or equivuriunce). It is well known that C, can be 
thought of as the space of smooth sections of the homogenous vector bundle (called also 
vector G-bundle) with base space G/P and fibre V,, (which is an associated bundle to the 
principal P-bundle with total space G). 

Then the elementary representation (ER) 7X acts in C, , as the left regular representation 

(LRR), by 

(Ix(g)_V(g’) = 3(g-‘g’), g. g’ E G. (4.2) 

(In practice, the same induction is used with non-discrete series representations of M and 
also with non-cuspidal parabolic subgroups.) One can introduce in C, a Frechet space topol- 
ogy or complete it to a Hilbert space (cf. [2 11). The ERs differ from the LRR (which is highly 
reducible) by the specific representation spaces C, In contrast, the ERs are generically ir- 
reducible. The reducible ERs from a measure zero set in the space of the representation 
parameters p, u. (Reducibility here is topological in the sence that there exists a non-trivial 
(closed) invariant subspace.) Next we note that in order to obtain the intertwining differential 
operators one may consider the infinitesimal version of (4.2) namely 

(Cx(X).V(g) 4 iFtexp(-rX)R)l,=o. x E G. (4.3) 

The feature of the ERs which makes them important for our considerations in [IO] and 
here is a highest weight module structure associated with them. (It would be lowest weight 
module structure, if one exchanges N with fi, as is actually done in [IO].) Let G, = G 
if G is complex or real split, otherwise let & be the complexification of G with triangular 
decomposition: 6, = G,‘@‘Ft, @G;. Further introduce the right action of & by the standard 
formula: 

(XF’,(g) = $F(g exp(tX))l,,o. (4.4) 
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where, X E &, 3 E C,, g E G, which is defined first for X E B and then is extended to 
& by linearity. Note that this action takes 3 out of C, for some X but that is exactly why 
it is used for the construction of the intertwining differential operators. 

We illustrate the highest weight module structure in the case of the minimal parabolic 
subgroup. In that case M = MO is compact and V, is finite dimensional. Consider first 
the case when MO is non-abelian. Let uc be the highest weight vector of V,. Now we can 
introduce @-valued realization Cx of the space C, by the formula: 

cp(g) = (uo, 3(g)), 

where ( , ) is the MO-invariant scalar product in V,. On these functions the counterpart 
IX of the LRR (4.2) its infinitesimal form (4.3) and the right action of s, are defined as 
inherited from the functions 3: 

‘;‘x(g)cp = (uo, IX km, (4.6a) 

,cX(X)cp k (vu, CX(X)3), (4.6b) 

X$J G (ua, X3). (4.6~) 

In the geometric language we have replaced the homogeneous vector bundle with base 
space G/P and fibre V, with a line bundle again with base space G/P (also associated to 
the principal P-bundle with total space G). The functions cp can be thought of as smooth 
sections of this line bundle. If A40 is abelian or discrete then V, is one-dimensional and Cx 
coincides with C, ; so we set cp = 3. Part of the main result of [lo] is: 

Proposition 3. The functions of the @-valued realization 2X of the ER C, sati& 

&-I = A(X)(p, XE’Flc, (4.7a) 

&J=o, x E @, (4.7b) 

where A = A, E (I&)* is built canonically from x and contains all the information from 
x, except about the character E of thejnite group Mod). 

Now we note that conditions (4.7) are the defining conditions for the highest weight 
vector of a highest weight module (HWM) over & with highest weight A, in particular, of 
a Verma module with this highest weight, cf. (2.1). 

Let the signature X of an ER be such that the corresponding A = A, satisfies (2.8) for 
some B E A+ and some m E N. If 6 is a real root, then some conditions are imposed 
on the character t representing the finite group Mod [28]. Then there exists an intertwining 
differential operator [lo]: 

Drnfi : c, ---+ c,l. (4.8a) 

~“‘8 o TX(g) = TX’(g) o D”@ V, E G, (4.8b) 

where x’ is uniquely determined so that A’ = A,! = A - rnp. 
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The important fact is that (4.8) is explicitly given by [IO]: 

DO”“cp(s) = FW;. . . ., Iz,-)cp(g). (4.9) 

where P”@ is the same polynomial as in (2.4) and kjI denotes the action (4.6b). One 
important technical simplification is that the intertwining differential operators (4.9) are 
scalar operators since they intertwine two line bundles (?x, C!,‘. 

4.2 

Now we generalize the above sketched construction of [lo] to multilinear intertwining 
dtfferential operators. We have the following. 

Proposition 4. Let the signature x of an ER be such that the k-Verma module b V” bvith 
highest weight A = A, has a singular vector k v(’ E k VP , * i.e., (3. I ) is satisjed,fin Some 

p E r+. Let us denote 

where kP’ E Sk@-) is some concrete polynomial as in (2.18~). Then there exists a 

multilinear intertwining differential operator which we denote by kT;(” such that 

= c”(x) 0 kz;1” t/x E G, (4. I?) 

where x’ is uniquely determined (up to the representation parameters of the discrete sub- 
group Md) so that A’ = AX’ = kA - p. The operator is given explicitly by the same 
polynomial as in (4. IO), i.e., 

kzf (q ‘8 . . . (4.13) 

k k 

where the hat on k’P@ symbolizes the right action (4.6b), the explicit action of (I &pica1 
term of k?’ being (cfi (2.18~)): 

k 

(4.14) 

Proofi Completely anagolous to the case k = 1 (cf. [IO]). 0 



16 VK. Dobrev/Journal of Geometry and Physics 25 (1998) l-28 

Remark 2. The analogue of the intertwining property (4.12) on the group level, i.e., 

kZ;(” 0 +Q)@‘.. @ P(g) = TX’(g) 0 kz; vg E G, (4.15) 
i 

k 

will hold, in general, for less values of A than (4.12). This is in sharp contrast with the k = 1 
case, where there is no difference in this respect. An additional feature on the group level 
common for all k 1 1 is that some discrete representation parameters of x, not represented 
in A, get fixed. 

Remark 3. Let us stress that since we have realized arbitrary representations in the spaces 
of scalar-valued functions p then also the intertwining differential operators are scalar 
operators in all cases - geometrically speaking, these operators intertwine (tensor products 
of) line bundles. This simplicity may be contrasted with the proliferation of tensor indices in 
the approaches relying on Weyl’s SO(n) polynomial invariant theory [20], cf., e.g., [3,13], 
where G = SO(n + 1, l), it4 = MO = SO(n), dim A = 1. 

Finally we should mention that the simplest formulae are obtained of one restricts the 
functions to the conjugate to N subgroup I? [lo]: 

C, A (4 = Rv 1 p E c,, (Rv)(i) L &ii), ii E ET). (4.16) 

Clearly, the elements of C, and consequently cx are almost determined by their values on 
fi because of right covariance (4.1) and because, up to a finite number of submanifolds of 
strictly lower dimension, every element of G belongs to fi M A N. The latter are open dense 
submanifolds of G of the same dimension forming non-global Bruhat decompositions of 
G. Connectedly, I? is an open dense submanifold of G/P. 

The ER TX acts in this space by 

(TX (gM)(fi) = e “(%+-‘f$(n’), 

D~“(m)@($ = D’“(m)qo(ii) = (IQ, D~(m)J(fi)), (4.17) 

where g E G, ii, ti’ E fi, m E M, a = exp(H), H E A, and we have used the Bruhat 
decomposition g-t; = i’man(n E N). (The transformation can also be defined seprately 
for g-Iii $! f?MA N and there exists smooth passage from (4.17) to these expressions. This 
is related to the passage between different coordinate patches of G/P.) One may easily 
check that the restriction operator R intertwines the two representations, i.e., 

TX(g)R = RFx(g) Vg E G. (4.18) 

5. Bilinear operators for SL(n, R) and SL(n, C) 

5.1 

In this section we restrict ourselves to the case G = SL(n, rW), mentioning also which 
results are extendable to SL(n, C). We use the following matrix representations for G, its 
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Lie algebra G and some subgroups and subalgebras: 

G = SL(n. R) = (g E gl(n. R) I det g = I}. 

G = sl(n, R) = (X E gl(n, R) 1 tr X = 0). 

K = SO(n) = (g E SL(n, 0%) 1 gg’ = g’g = I,]. 

Ao = {X E sl(n, R) ( X diagonal], 

A0 = exp(Ao) = {g E SL(n, R) 1 g diagonal), 

Mo={m E K Ima =maVa E Ao} 

=(m=diag(bl,S2...,6,)16k=f. 

St&...& = l] =M$ 

Na = (X = (Uij) E gl(n, R) 1 Ui,j = 0, i > j). 

NO = exp(n/o) 

= (X = (Uij) E gl(?l, R) IUii = 1. Uij = 0, i > j), 

& = {X = (Uij) E gl(n, R) 1 Uij = 0, i 5 j), 

NO = exp(fl0) 

= {X = (Uij) E gl(tl, R) ) Uii = 1. Uij = 0, i < j). 

(5.la) 

(5.lb) 

(5.lc) 

(5. Id) 

(5.le) 

(5.lf) 

(5.lg) 

(5.lh) 

(5.li) 

(5.lj) 

Since the algebra sl(n, R) is maximally split then the Bruhat decomposition with the 
minimal parabolic: 

may be viewed as a restriction from @ to R of the triangular decomposition of its complex- 
ification 

Accordingly, we may use for both cases the same Chevalley basis consisting of the 3(n - I 1 
generators XT, Xi, Hi given explicitly by 

X+ = Ei.i+l. Xi = Ei+l,it ff, = Eii - Ei=l,i+l, 

i = l,...,n- 1, (5.4) 

where Eij are the standard matrices with 1 on the intersection of the ith row and jth 
column and zeros everywhere else. Note that XT, X,7. Hi, respectively, generate NO. fiu, 
Au, respectively, over R and ‘T$,GF, 31, respectively over C. 

5.2 

We consider induction from the minimal parabolic case, i.e., P = MoAoNo. The charac- 
ters of the discrete group Mu = Mod are labelled by the signature: t = (E I,Q, . , E,,- , ), tk = 
0. 1: 
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n-l 

ch,(m) = ch,(St, 62,. . . (6,) k n(~3k)‘~, m E MO. (5.5) 
k=l 

The (non-unitary) characters u E d; of A0 are labelled by Ck E @, k = 1, . . . , n - 1, which 
is the value of u on Hk = diag (0, . . . , O,l,-1,O ,..., O)~Aa(withtheunityonkth 
place),k= l,..., r2 - 1, i.e., Ck = U(Hk): 

ch, (a) = ch, (exp TfkHk) i exp Trxv(Hc) 

=eXp Et!& = ni?. 
k k 

U= r-I ak E AO, 

ak = eXp tkffk E Ao, tk,ik =eXptk E [w. 

Thus, the right covariance property (4.1) is 

n-l 
F(gmUn) = n(6k)tPG;kF(g), 

k=l 

(5.6) 

(5.7) 

and in this case we have scalar function, i.e., (o = F because MO is discrete. Thus, the ER 
acts on the restricted functions as (cf. (4.17)): 

(5.8) 

(note that & = (&-I). The functions 4 depend on the in(n - 1) non-trivial elements of 

the matrices of fia. For further use those will be denoted by z;., i.e., for ti E & we have 

n = (aij) with Uij = Z; for i > j, cf. (5.lj). 
The correspondence between the ER with signature x = [c, ~1 and the highest weight 

A, used in the general construction of Section 4, here is very simple [lo]: A = -u, so 
that A(H) = -u(H). Further, we recall that the root system of sl(n, C) is given by roots: 
faij,i < j,sothataij =ai+ai+l+...+olj_lfori+l < jandai.i+t =~i,where~i,i = 
1, . . , n - 1, are the simple roots with non-zero scalar products: ((Y;, LX;) = ai = 2, 
(~ri, cYi+t) = oi(oi+t) = -1, then Us?’ = ai. Then we use (u, ai) = U(Hi) = ci. 

We need also the infinitesimal version of (5.8): 

C”(Y>$($ G i(T’,‘(exp tY)4)(Z) 
( > 

, Y E G, 
It=0 

which we give for the Chevalley generators (5.4) explicitly: 

(5.9) 

c”(q) = ,;+I ci + 2 N; - 2 N;+, 
k=i=t k=i+2 
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i-l II 

-c z.s i+lD; + c ;fDf+,, 
s= I k=i+? 

i-l 

P(X,) = _q+t’ - c 7’ D’+’ , 
‘.S s 

(5.10a) 

(S.lOb) 

P’(Hi) =L’j + c Ni" - c N,k,, 
k=i+l k=i+2 

i-l i 

- EN: +cN,;+‘, (5. IOC) 
s= I .s= I 

where Dj EE a/&;, Ni = zj(a/azj), and we are using the convention that when the lower 
summation limit is bigger than the higher summation limit then the sum is zero. 

We also need the right action (4.4) for the lowering generators which on the restricted 
functions is given explicitly by 

Dj+' + 2 $+,Df; @(ii). 
k=i+2 

(5.11) 

Naturally the signature E representing the discrete subgroup M = Mi is not present in 
(5.10) and (5.11). Thus, formulae (5.10) and (5.11) are valid also for the holomorphic ERs 
of SL(n, Q. 

Now to obtain explicit examples of multilinear intertwining differential operators it re- 
mains to substitute formula (5.11) in the corresponding formulae for the singular vectors of 
the k-Verma modules. We note that often a singular vector will produce many intertwining 
differential operators. For example each formula valid for any simple root will produce 
n - I formula, each formula valid for roots as (rt + cq will produce IZ - 2 formulae for each 
ai + a;+ 1. To save space we shall not write these formulae except in a few examples in the 
cases n = 2 and n = 3. 

5.3 

Now we restrict ourselves to the case G = SL(2, iw). We denote: x = ;y, c = ct. ??= E I, 

X* = XT, H = HI. We start with bilinear intertwining differential operators, k = 2. We 
combine Propositions 2 and 4. For G = s/(2, [w) Proposition 2 gives all singular vectors of 
bi-Verma modules since all weights in r+ are of the form p = no. n E f+J. Thus we have: 

Theorem 1. All bilinear intertwining differential operators,for the case qf G = sl(2. R) 

ure given by the formula: 

(5.12) 
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where c#J(~) k (&)P@(x>, 8, A a/ax, and the coeficients y,;? are given in Proposition 2. 
The intertwining property is 

2T,n, 0 (F(X) @ 1, + 1, @ E’(X)) 

ZZ F(X) 0&?a vx E G, 

c = -A(H), c’ = 2(c + n). (5.13) 

Proof Follows from the elementary combination of Propositions 2 and 4 in the present 
setting. In particular, A’ = 2A - na, c’ = -A’(H) = -2A(H) + ncr(H) = 2(c + n). 

??

As we mentioned, the corresponding intertwining property on the group level is restricting 
the values of A and, as for k = 1, of some discrete parameters not represented in A. In the 
present case we have: 

Theorem 2. All bilinear intertwining differential operators for the case of G = SL(2, R) 
are given byformulae (5.12) and (3.3) with ‘integer’ highest weight: A(H) = p E Z. The 
intertwining property is 

&a o (T’*‘(g) @ T=(g)) = T”‘.“(g) 02 T/a Vg E G, 

c = -A(H) = -p, c’ = 2(c + n) = 2(n - p), 

E = E’ = p(mod 2). (5.14) 

Proof Follows by using Theorem 1 and checking (5.14) for 

g= O l ( 1 -1 0 ’ 

which sends x # 0 into - l/x. 0 

Thus, the signatures of the two intertwined spaces coincide and are determined by the 
parameter p. 

Next we consider the example of invariant functions 4, i.e., functions for which the 
transformation law (5.8) has no multipliers-this happens iff c = ??= 0. For these functions 
the bilinear intertwining differential operators are given by the special case of Theorem 2 
when A(H) = p = 0, which by (3.3) further restricts IZ to be even or n = 1. Formula 
(5.12) with (3.3) substituted simplifies to 

,21;‘,(4) = C(-l)‘-‘(1 - :Sj, n/2) 
j=l 

(5.15) 

(5.16) 
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and in addition we have fixed the constatn yo for later convenience. Let us write out the first 
several cases of (5.15): 

2e@(+) = ;($‘)*, (5.17a) 

&a (4) = qV”@’ - i Q$“)*, (5.17b) 

22&($) = f#P’@’ - 1of$(4)$” + lO(qY”)T (5.17c) 

where (standardly) 4’ E a,4 = @(I), 4” s a,“$~ = +(*), 4”’ E a24 = $c3). Note that 
(5.17b) (i.e., (5.15) for Iz = 4) was already given (1.7). We give now two important technical 
statements. 

Lemma 1. For n > 2 the (formal) substitution 4(.x) + (ax - y)/(6 - B,V) in the inter- 
twining d#erential operators (5.15) gives zero: 

2cu(&) = 0. @o(x) = 5, n E 2 + 2N. (5.18) 

Proof Follows from the direct substitution. In the calculations one uses the fact 

o!x - y a_: ~ = (-l)“m!#?“-1 

s - /KX (6 - /Yx)m+’ * 
/?I E N. (5.19) 

After the substitution of (5.19) in (5.15) the resulting expression is proportional to (1 - 1 Y-2 
which is zero for n > 2 (the latter making clear why the lemma is not valid for n = 2). 0 

Lemma 2. Let 4, I+!J E DiffoS’ , the group of orientation preserving difeomorphisms qf the 
circle S’ = [w/2~rZ. Then we have 

2$fa(4 0 1c/) = ($‘)!j~a(~), n = 1,2, (5.20) 

*g&J4 0 1cI) = W’)“,~&J) + (~‘);~&#d 
+P,(4.$), nE2+cN 

P4(@3 $I)= 0. 

P,,(@,$o)=O, n ??4+2N. 

(5.21a) 

(5.21b) 

(5.21c) 

Proo$ For (5.20) and (5.21) (5.21b) this is just substitution. Further we note that 

(5.22) 

is just the intertwining property of 22& and then (5.2 1 c) follows because of Lemma 1. 0 

Remark 4. We give an example from Lemma 2 

Ph(@, ti) = 10(!V)2(3@“‘ti’ - 4(~“)*)220,,($) 

- ~c$“I#J’($(~‘($‘)* - 6+“‘$“$ + 6(1c,“j3). (5.23) 
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Using (5.19) it is straightforward to show &j(4, ~$0) = 0. In fact, the first term in (5.23) 
vanishes for @ = $0 because of (5.18). The vanishing of the second term in (5.23) prompts 
us that the trilinear expression in 4 is also an intertwining differential operator. This is 
indeed so, cf. the last section for some more examples for trilinear operators. 

We can introduce now a hierarchy of GL(2, IL! invariant in-differentials for every n E 2N: 

S&(4 0 40) = Scb(@) 0 40, 400(x) = z (5.24b) 

where property (5.24b) is just a restatement of (5.22) for IZ z=- 2 and (5.20) for n = 2. The 
usual Schwarzian Sch4 is one of these objects (cf. (1.10)). It has an additional property: 

Schq(@ 0 +) = Sch4(@) 0 1cI + Schq(@), 4, @ E DiffoS’ (5.25) 

showing that it is a 1 -cocycle on DiffnS’ [ 19,201. 

Remark 5. One may consider also half-diflerentials and using (5.24a) and (5.16) write 

Schl(@) A 2<W 

= q!@‘dx)“’ = @(d#2. (5.26) 

Property (5.24b) then follows from (5.20). 

Finally, we just mention the case when the resulting functions are invariant: c’ = 0 ==+ 
c = --n. This is only possible when IZ is even, cf. (3.3). Formula (5.12) with (3.3) substituted 
simplifies considerably 

~~&Y(c#J) = C(-l)‘(i - i6j,n,2)f$(n-j)4(j) 
j=O 

(5.27) 

and we have fixed the constant yo appropriately. 

5.4 

Now we consider the case G = SL(3, R). We denote: x = z:, y = z;, z = z:. The right 
action is (I$ = 4(x, y, z)): 

X&J = (3, + .Y&)$, rZ;@ = ay4, ii,@ = aZ4, (5.28) 

and we have given it also for the non-simple root vector XT = [XT, Xl]. 
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The bilinear operator corresponding to (3.5) is 

Z%) =@((A1 - AZ)(&I(? + Y&Z) - A&) 

-(AI + AZ + l)&(& + .w$;). (5.29) 

where a = w = C~I + ~2, & = a@/a,, etc. The two bilinear operators correponding to 
(3.6) are given by 

with constants as given in (3.6b) and (3.6~). 
The intertwining property is 

(5.30) 

$:a 0 (c’(X) 64 l,, + 1, @ P(X)) 
- r 

= cc“ (X) 0; zia vx E &Y, (5.3 1) 

where c; = -A; = -A(H;), A’ = 2A -m, c: = -A’(H,) = -2A(H;) +n(r(H,) = 

-2Ai + n = 2~; + n, i = 1,2, since a(Hi) = (at + az)(H;) = 1. 
The case of invariant functions, i.e., CI, = C?k = 0 gives a trivial (zero) operator n = 2, 

while for n = 1 we have (up to scalar multiple): 

;ekN = &(@I + v&). (5.32) 

In the case of invariant resulting functions, i.e., C; = 6; = 0, A = ~PZ(;Y, A, = :,I. we 
have from (5.29): 

;I:‘%) = ;C%J, + 24,(& + >$;). (5.33) 

while from (5.30) we have two operators corresponding to the two solutions given by (3.6b) 
and (3.6c), respectively, 
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- 242” - WA&,?, + Y&z) - w&y + y&z)27 

;z’;&$) =&&X + YM2. 

(534a) 

(534b) 

6. Examples with k 2 3 

We return now to the GL(2, R) setting to give examples of trilinear intertwining dif- 
ferential operators using the singular vectors of tri-Verma modules above. The trilinear 
intertwining differential operators for the case of G = sZ(2, R) are given by the formula: 

(6.1) 

where the coefficients y,“j are given from the expressions for the corresponding singular 
vectors of tri- Verma modules, e.g., those given in Section 5. 

If we pass to the group level then the possible weights are restricted to be ‘integer’ (as in 
Theorem 2): A(H) = p E Z and the corresponding intertwining property is 

$:a 0 (F,(g) 8 z-C*t (g) 63 TCqC (8)) 

= 7-“‘(g) o 32;a Vg E G, 

c = -A(H) = -p, c’ = 3(c + n) = 3(n - p), 

E = E’ = p(mod2). (6.2) 

Next we restrict to the example of invariant functions $, i.e., c = c = 0. The trilinear 
intertwining differential operators obtained from the singular vectors in (3.10) are: 

3$!(@) = (&2@9 (6.3a) 

&&%J) = 9(@‘)29 (6.3b) 

3qU (4) = (@‘)3 1 (6.3~) 

3$ (4) = 4 wJ”‘@ - ; 6#02) 1 (6.3d) 

3g (4) = &w”‘ti - ; k02), (6.3e) 

32&@) = #‘4’(#‘>2 - W”‘@“@ + 6(&‘)3, (6.3f) 

322 (4) = $J (@‘qY - 1 OqPJ$” + 1 O(f$“‘)2). (6.W 

We recall that the operator in (6.3f) has appeared in (5.23). 
Analogously to Lemma 1 we note that for IZ > 3 the (formal) substitution 4(x) H 

(ax - y)/(6 - ,8x) in the intertwining differential operators (6.3) gives zero: 

321;),(4%) = 0, 40(x) = s, n > 3. 

which because of the factorization follows from Lemma 1 except for (6.3f). 
Analogously to Lemma 2 for 4, $ E DiffuS’ one can check for the examples in (6.3): 

3gyC$o +I = ($w 3q&C n = 1,2,3, (6.5) 



VK. Dohrev/Journal qf Geomet? and Physics 25 (IWXJ l-28 25 

3ga (4 0 1cI) = oTo5 3Q (4) + (6)” 3gU (Q). (6.6a) 

&,J@ 0 $) = (1lr’Y &J$) + (@‘)3 3$&k) 

- 2@‘(q5’1c,‘)* 220,, (YJ). (6.6b) 

Consider now the case of resulting invariant functions, i.e., c’ = c’ = 0, i.e.. p = 
A(H) = i = n. There is no operator for n = 1, while for II > I we get from (3.10): 

jL’, *a = 2#‘4? - qj’q#J, A = 2, (6.7a) 

.7u, 3~ = 9$/f’@ _ 9~~~~~ + 44’3. i = 3, (6.7b) 

ju, ‘& = 2$‘4’# - ,@“‘@‘4 + (qy’)?@, j = 4. (6.7~) 

3 c’,, 5o1 = 25qn$* - 25@‘4b#J’$ + ,@“‘@“q$ 

+ 16@“‘q5’* - 9(@“)*+‘, i = 5, (6.7d) 

3% 6~ = 60&4’$“4 _ 50$(4)#2 _ 45$“‘*@ 

+ ,O@“‘@“@’ - 24(#‘)‘. ci = 6. (6.7e) 

3 US ‘6~ = 2$(6)@ _ 24’5’4’4 

+ 2$‘4’@“$ - $J”‘*& li = 6. (6.7t‘) 

We see that at lower levels there occur many factorizations and trilinear operators are 
actually determined by bilinear ones. We illustrate this by two statements for arbitrary 
k-Verma modules and the corresponding multilinear intertwining differential operators. 

Proposition 5. The singular vectors of the k-Verma modules k V” of level nu with n E N, 
n 5 k, 1y E As, in the case A(H,) = 0 are given bv: 

k vf” X,@~..@Xx,@l”@...@I, 
iv 

n k-n 

1 insk A(H,)=O. 

Proc$ Follows from the direct verification. 0 

Proposition 6. The GL(2, R) multilinear intertwining differential operators with the 
proper-v: 

kca 0 T”,‘(g) @ . &I T”.‘(g) = TC’.“(g) o kea Vg E G. 
L 

c = -A(H) = 0, c’ = kn. t = e’ = 0 

are given by 

(6.9) 

ke’,(4) = @“-“(ti’)“, 1 5 n 5 k A(H) = 0. (6.10) 
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Proofi Follows from Propositions 4 and 5. 0 

We note that the operators in (5. I6), (5.17a) and (6.3a)-(6.3c) are partial cases of (6. IO). 

Appendix A. Tensor, symmetric and universal enveloping algebras 

Let E be a vector space over F. The tensor algebra T(E) over E is defined as the free 
algebra generated by the unit element. We have 

T(E) = 6 Tk(E), 
/i=O 

Tk(E) = E 8.. @ E, To(E) = F. 1. (A.1) 

The elements t E Tk (E) are called covariant tensors of rank k: 

t = C til,,.ir ei, @ . . . @ (?ip. 64.2) 

where ei E S, S is a basis of E, tis,,.ia E F. (The rank of a covariant tensor does not depend 
on the choice of basis of E.) The tensor t is called symmetric tensor if trn..‘ir: is symmetric 
in all indices. Let us denote 

S(E) = @Sk(E), (A.31 
k=O 

where Sk(E) is the subspace of all symmetric tensor of rank k. Note that if dim E = n < 00, 

then 

dimSk(E)= (n’:‘). (A.4) 

Let I(E), respectively, Ik(E), be the two-sided ideal of T(E), respectively, Tk(E), gen- 
erated by all elements of the type x @I y - y @ x, x, y E E. Then we have 

T(E) = S(E) 63 I(E), S(E) 2 T(E)/I(E), 

Sk(E) g Tk(E)/&(E). (A.3 

Consider now a Lie algebra G. The universal enveloping algebra U (6) of G is defined as 
the associative with generators e;, where ei forms a basis of G and the relations 

r?i @ ej - ej @ e; = c c:ek G [ei, ej] (A.61 

hold, where cfj are the structure constants of G. Equivalently U(G) 2 T(G)/J(G), where 
T(G) is the tensor algebra over 6, J(G) is the ideal generated by the elements [x, y] - (x @ 
y - Y C3 xl. Since T(G)U(G) $ J(4) = S(G) @ Z(G) and J(G) Y Z(G) are isomorphic, 
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then also CJ (G) E S(G) as vector spaces. This is the content of the Poincare-Birkhoff-Witt 
(PBW) theorem. 

Further in the case of U(G) we shall omit the @ signs in the expressions for its elements. 
With this convention as a consequence of the PBW theorem U(G) has the following basis: 

eu = 1. e ,,... jk = ei, . . . ej,. iI 5 ‘.’ 5 ik. (A.7) 

where we are assuming some ordering of the basis of G, e.g., the lexicographic one. 
Finally we recall that 4 and U(G) are completely determined from the following com- 

mutation relations: 

(Hi. Hj] =O. [Hi. xl*] = *u. ,x’, ‘.I J (A.&I) 

Ix+. XjY ] = 6jj If; (A.&) 

and Serre relations 

i(-]+ (:) (x’)“x:(x’)“-” = 0. 

i # j. n = 1 -Uij, (A.9) 

whereXF.Zf;.i = l,.. . ,1 = rank G are the Chevalley generators of G (corresponding to 
the simple roots oi), (uij) = (2(a;, oj)/(oi. oli)) is the Cartan matrix of G, and (. . .) is 

normalized so that for the short roots 1y we have (a. a) = 2. 
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